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Abstract

The spatial development of an initially linear vorticity-mode instability on a compress-
ible flat-plate boundary layer is considered. The analysis is done in the framework of the
hypersonic limit where the free-stream Mach number M — oo. Nonlinearity is shown to
become important locally, in a thin critical layer, when o, the deviation of the phase speed
from unity, becomes o (M ‘*‘7) and the magnitude of the pressure fluctuations becomes
o (cr% M 2) . The unsteady flow outside the critical layer takes the form of a linear in-
stability wave but with its amplitude completely determined by the nonlinear flow within
the critical layer. The coupled set of equations which govern the critical-layer dynamics
reflect a balance between spatial-evolution, (linear and nonlinear) convection and non-
linear vorticity-generation terms. The numerical solution to these equations shows that

nonlinear effects produce a dramatic reduction in the instability-wave amplitude.

1. Introduction

The theory of compressible boundary-layer instabilities has received renewed attention
in recent years primarily due to the current interest in hypersonic flight. The foundations
of the linear theory were provided by Lees & Lin (1946) who showed that compressible
boundary layers are often inviscidly unstable due to the presence of a generalized inflection

point. Indeed, at sufficiently large Mach numbers, it is believed that laminar boundary-layer



instabilities are predominantly inviscid.

A comprehensive account of the linear inviscid stability theory is given by Mack (1984,1987).
There it is shown that, in addition to the single inflectional mode present at all non-zero Mach
numbers, the Rayleigh problem admits a countably infinite set of solutions whenever there
is a region of supersonic flow relative to the phase speed of the disturbance. An example of
this multiplicity of solutions is shown in figure 1 where the spatial growth rate —a; is plotted
against the frequency S for an insulated flat plate at a free-stream Mach number M = 10.
In this figure, Mack’s (1987) method of identifying families of eigensolutions associated with
the neutral sonic modes is used. The first family, denoted ¥,, starts from the upstream
running Mach wave at § = 0 where ¢ = 1 — 1/M while the other families, denoted ¥g4,, start
from the successive downstream running Mach waves at S = Sy, where ¢ =1+ 1/M. Only
solutions for ¢, < 1 are presented in the figure so the L4, curves begin at the frequencies
S1n corresponding to the non-inflectional neutral points with ¢ = 1. The X4, curves are
shown only for a small range of S, were this range extended, the damping rate along each
curve would, in general, reach a maximum and then decrease toward zero. The other neutral
frequencies shown in figure 1 are denoted by S,y and correspond to the generalized inflection
point. In this paper, the convention of referring to the X, family as the vorticity mode and
the 4, families as the acoustic modes (with the first acoustic mode corresponding to ¥4,
the second to £42 and so on) will be followed.

Single-frequency excitation of compressible boundary layers gives rise to spatially grow-
ing instability waves. For excitation amplitudes and Reynolds numbers sufficiently small
and large respectively, the initial evolution of such disturbances can be described by weakly

nonparallel linear stability theory. According to this theory, the instability wave continues



to grow as it propagates downstream and, owing to the growth of the mean boundary layer,
the local Strouhal number increases. The latter result follows from the definition of the local
Strouhal number as §F*/U,, where 8 is a measure of the local boundary-layer thickness, F*
is the constant forcing angular frequency and Uy is the constant free-stream velocity. For
simplicity, the mean flows considered here are assumed to be self-similar so the local stability
properties can be found from eigenvalue diagrams such as figure 1 where S is now interpreted
as the local Strouhal number.

As the local Strouhal number increases towards its neutral value, nonlinearity will come
into play locally, in a thin critical layer, to balance the resulting singularity in the Rayleigh
equation provided the Reynolds number is sufficiently large (see Goldstein & Leib 1988).
This nonlinear interaction can be described by an analysis completely parallel to that given,
for compressible shear layers, by Goldstein & Leib (1989) and Leib (1991). For the shear
layers, the near-neutral region is the first region in which nonlinearity enters the development
of the unsteady flow provided the instability-wave amplitude remains small. However, for
the boundary layers of interest here, nonlinearity can become important away from the near-
neutral region while disturbance is still small due to the interplay between the vorticity
and acoustic modes. This was first noted in the large Mach number analysis of the Rayleigh
problem done by Blackaby, Cowley & Hall (1992, hereinafter referred to as BCH). They show
that near each non-inflectional neutral frequency Sy, the vorticity mode has a well-defined
critical layer and consequently, may be preferentially affected by nonlinearity. Referring
to figure 1, this means that if a vorticity mode, with a dimensionless frequency 0.1 say, is
excited, nonlinearity can become important as the local Strouhal number approaches either

Sy2 or Sya (far from the neutral Strouhal number Sy4) while the instability-wave amplitude



is still small. It is this possibility that will be investigated in the present work.

As in the compressible-shear-flow analysis of Goldstein & Leib (1989) and Leib (1991)
and the incompressible boundary and shear layer analyses of Goldstein Durbin & Leib (1987),
Goldstein & Leib (1988) and Goldstein & Hultgren (1988), nonlinearity comes into play
locally, in a thin critical layer, to balance a singularity in the Rayleigh equation only now the
singularity arises as the local Strouhal number approaches a non-inflectional neutral value.
The unsteady flow outside the critical layer remains essentially linear but with a slowly
varying amplitude that is completely determined by the nonlinear dynamics in the critical
layer. The appropriate scaling between the local instability-wave amplitude and frequency
for which this nonlinear interaction takes place is determined by requiring that the nonlinear
problem match onto the linear small-growth-rate solution far upstream. This ensures that
the nonlinear solution represents the natural downstream continuation of the upstream linear
solution.

To obtain a description of this nonlinear interaction from a first principles analysis, it is
necessary to characterize, in some rational way, the relative sizes of the linear growth rate and
wavenumber. This characterization is most easily arrived at by considering the problem in
the hypersonic limit where the free-stream Mach number M — oco. The relevant asymptotic
solutions to the Rayleigh problem, for a fluid obeying Chapman’s viscosity law, are then
given by Cowley & Hall (1990) and Smith & Brown (1990). The former reference contains an
analysis of the small-wavenumber acoustic modes while the latter gives order-one wavenumber
solutions for the vorticity mode as well as the acoustic modes. A detailed analysis of both
mode types is given by BCH for a fluid satisfying the more accurate Sutherland viscosity law

and Grubin & Trigub (1992a,b) present solutions for a fluid with a Prandtl number less than



unity and a power law viscosity-temperature relation.

The nonlinear interaction considered here is inherently a large Mach number phenomenon
because it requires that the first few Sy, lie within the frequency range of the unstable vorticity
mode (c.f. figure 3). But, from a practical stand point, the Mach number should not be too
large since as it increases the frequency of the most rapidly growing vorticity-mode solution
(and consequently, the excitation frequency of most interest) moves beyond the range in
which the interplay with the merged acoustic modes produces a well-defined critical layer
(see BCH). For an insulated flat plate, these considerations restrict the Mach number to
values between about 8 and 20 which, nevertheless, is a range of technological interest. BCH
indicate that their asymptotic solution for the vorticity mode is not in overall agreement
with the exact solution until M > 20. It is felt that the nonlinear evolution equations to be
derived here will remain valid in the more moderate range, 8 < M < 20, for the following
reasons. The present analysis involves only the linear solutions for the vorticity mode near
the non-inflectional neutral frequencies S;, and these solutions are in, at least, qualitative
agreement with the exact solutions at lower Mach numbers. Also, the nonlinear interaction
is local in nature and, to a large extent, its occurrence depends only on the requirement that
the linear growth rate be small compared to the wavenumber which is certainly the case in
the Mach number range of interest.

Goldstein & Wundrow (1990) showed that the aforementioned nonlinear mechanism
causes a breakdown in the linear solution of Cowley & Hall (1990) when the amplitude of
the pressure fluctuations in the main boundary layer becomes O (M “4In"'M 2) . Although

presented in the context of acoustic modes, these analyses also apply to the vorticity mode



in the vicinity of the non-inflectional neutral frequencies!. The solutions to the nonlinear
critical-layer problem derived in Goldstein & Wundrow (1990) depend on a single free para-
meter, r, which is defined as the ratio of the logarithmic derivative of the mean temperature
to the logarithmic derivative of the mean vorticity evaluated at the transverse position where
the phase speed of the disturbance equals the mean flow speed. This parameter is between
0 and 1 on the acoustic-mode branch of the linear solution and is greater than 1 on the
vorticity-mode branch. The authors only presented numerical results for values of r less than
1, however these results clearly show the significance of nonlinear vorticity generation due to
compressible effects. In particular, for values of r near 1 they found that these effects come
into play first to produce a dramatic increase in the instability-wave growth rate.

The purpose of the present work is to determine how critical-layer nonlinearity affects
the spatial development of an initially linear vorticity mode as it nears a non-inflectional
neutral frequency. This objective could be achieved by computing solutions to the evolution
equations derived in Goldstein & Wundrow (1990) for values of r greater than 1, however
two changes will be made to the derivation of these equations which will greatly broaden
their range of applicability. First, Sutherland’s law will be used to model the variation of
the viscosity with temperature instead of Chapman’s law since, as pointed out by BCH, the
former law is better suited for the large temperature variations encountered at hypersonic
speeds; and second, the frequency range over which the nonlinear analysis applies will be

enlarged to capture the maximum possible deviation from S), for which the linear vorticity

!The approximate linear dispersion relation obtained in Cowley & Hall (1990) and Goldstein & Wundrow
(1990) has two branches for which the growth rate is positive. One branch corresponds to the amplified
acoustic modes and the other corresponds to those amplified vorticity-mode solutions lying near the non-
inflectional neutral frequencies Si1n. This issue is explored in some detail by BCH.



mode has a well-defined critical layer.

In the present analysis, nonlinearity first becomes important when the amplitude of the
pressure fluctuations in the main part of the boundary layer becomes O (o‘g M 2) where o is
a measure of the deviation of the local phase speed from unity and must be o (M ‘%). The
coupled set of nonlinear equations that determine the critical-layer dynamics are a special
case of those obtained by Goldstein & Wundrow (1990) and must be solved numerically. The
computations show that, rather than enhancing the growth rate as it did in Goldstein & Wun-
drow (1990), nonlinearity now causes a dramatic reduction in the instability-wave amplitude
- presumably because the nonlinear vorticity-generation (or Bjerknes) term appearing in the
final critical-layer vorticity equation changes sign relative to the linear inhomogeneous term
when solutions for the vorticity mode are considered.

The overall plan of the paper is as follows. The problem is formulated in §2, where the
nonlinear flow is shown to gradually evolve from the strictly linear large M solution. The
unsteady flow outside the critical layer is a linear inviscid perturbation about the hypersonic
(i.e. M > 1), non-interactive, boundary-layer flow analyzed in BCH and the solution for this
flow is worked out in §3. In §4, a comparison between the asymptotic and exact solutions to
the linear dispersion relation is made. The asymptotic solutions obtained in 882 and 3 are
then used to formulate the relevant critical-layer problem in §5 and the numerical solution to

this problem is presented and discussed in §6.

2. Formulation

As in Goldstein & Wundrow (1990), concern here is with a nearly-inviscid, compressible,

boundary-layer flow of a perfect gas over a flat plate. The flow parameters in the free stream



are used as reference quantities and are generally denoted by the subscript co. The reference
length & is taken to be some suitable boundary-layer thickness (e.g. momentum thickness) in
the region where nonlinearity first becomes important. The steady flow is then characterized

by the Mach number

- U
M= e (2.1)
and the Reynolds number
R=1+C ! (2.2)

where @, = VYR is the speed of sound in the free stream, C &~ 110.4/T,, is the Sutherland
constant for air temperatures measured in degrees Kelvin, v is the kinematic viscosity, 7 is the
isentropic exponent of the gas and R is the gas constant. When numerical values are needed,
~ is taken to be 1.4 and C is taken to be 0.5 which corresponds to a typical free-stream
temperature in the upper atmosphere.

The Reynolds number is assumed to be large enough so that the unsteady motion is
essentially inviscid and unaffected by mean boundary-layer growth over the length scale on
which the nonlinear interaction takes place (see (5.13) for a more precise restriction). To
the required level of approximation, the mean pressure is then constant and the local mean

velocity and temperature are given by

{uo, w0} = {f,(n)’o}’ (2.3)

and

b0 = T'(n), (2.4)

respectively, where 7 is the Dorodnitsyn-Howarth variable (Stewartson 1964) which is related



to the transverse coordinate y by
y= /0 " T(s)ds. (2.5)
The local mean velocity and temperature fields are, of course, dependent on the con-
stitutive relations used to describe the fluid. The simplest fluid to consider from an analytic
stand point is a perfect gas with a Prandtl number of unity and a viscosity-temperature rela-
tion given by Chapman’s law since, in this case, the mean profiles can be expressed in terms
of the Blasius function. However, the large Mach number behavior of both the steady and un-
steady solutions can be significantly altered when more realistic models are used. The most
dramatic modification results when the viscosity law is changed. If Sutherland’s viscosity law
is used the steady flow takes on a double-layer structure in the limit as M — o0 (Freeman
& Lam 1959) and BCH show that the asymptotic solutions to the Rayleigh problem proceed
in inverse powers of M rather than VIn M as in the case of a Chapman-law fluid. A similar
result is found by Grubin & Trigub (1992a,b) when the viscosity-temperature relation is given
by a power law. The next most significant change occurs when Prandtl numbers other than
unity are considered. This was investigated by Fu, Hall & Blackaby (1990) as well as Grubin
& Trigub (1992a,b) and both show that the scaling of the mean flow remains unaltered but
that the powers of M in the resulting asymptotic expansions depend on the Prandtl number.
Finally, Fu, Hall & Blackaby (1990) considered the effects of gas dissociation and found that,
despite modifying the quantitative results, these effects leave the qualitative results (i.e. the
Mach number scalings and exponents) unaltered.
As previously stated, the fluid in the present investigation is taken to be a perfect gas
with a viscosity given by Sutherland’s law. It is now further assumed that the Prandtl number

is unity. This yields a model that captures the essential large Mach number behavior needed
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to formulate the nonlinear problem without resulting in an excessive amount of algebra.

Accordingly, the function f in (2.3) is determined by

/
" T% wy _
£ 2 (—T+cf =0 (2.6)
subject to the boundary conditions
f(O)=f(0)=0, f'(o)=1, (2.7)

and the local mean temperature is expressed as

T="T+(1-T)f + M0+ £)(1 - 1) (28)

with T = 1 for an insulated wall.
Freeman & Lam (1959) found that in the hypersonic limit the solution for f takes on a

double-layer structure consisting of a wall layer where
E=M %n (2.9)

is order one and a temperature adjustment layer where 7 is order one. In the wall layer, f

expands like
f=MEfo()+---. (2.10)

Substituting (2.9) and (2.10) into (2.6)-(2.8) and equating like powers of M, one obtains at

leading order

(AN
fof6'+2(\/%o) =0 (2.11)
with
b

fo(0) = fo(0) =0, fo=E&+Eo+ as £ 00 (2.12)

3E+eay T
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where
To=221 @+ 50~ ), (2.13)

72

oD@

fl

(2.14)

and &, is a constant which must be determined numerically. The temperature in the wall
layer is O(M?) so it follows from (2.5) and (2.9) that this region has a thickness of O(M%)
in the physical coordinate y.

The algebraic approach to the free-stream conditions exhibited in the wall layer becomes

exponential in the temperature adjustment layer where
f=n+M 3+ M 2g(n)+ . (2.15)

Substituting (2.15) into (2.6)-(2.8), g5 is found to satisfy

1(y— T\
ng£’+2(\/1 2(7 -~ D(Te + 1)g rr) =0 (2.16)

g
1- I - D@+ De+C°
subject to

gfz:__+... as n—0, g'2—)0 as 77— OC. (2.17)

Since the temperature here is O(1), the width of this region in terms of y is also O(1).
Therefore, in physical coordinates, the wall layer makes up the main part of the boundary
layer with the temperature adjustment layer serving as a relatively thin region through which
matching with the free stream is accomplished.

The unsteady motion is assumed to start as a linear, inviscid, spatially growing wave up-
stream in the flow. It is further supposed that the wave is monochromatic (at least initially)
and two-dimensional since, in the Mach number range of interest, the most rapidly growing

linear waves are planar (Mack 1984,1987). The nonlinear interaction to be considered here
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occurs as the local Strouhal number approaches a non-inflectional neutral value S;,. Non-
linearity then affects the evolution of the unsteady flow over a streamwise scale that is long
compared to the wavelength of the disturbance but short compared to the scale on which
the mean flow develops. For the purposes of the present analysis, S can then be taken as a

constant and given by

S F™

7= Sin+02M35, as M — oo (2.18)

S

i

where S;,, has an expansion in inverse powers of M, S is an order-one constant and oM T <
1. The behaviors of the local phase speed ¢ and complex wavenumber a depend on both the
sign of 5; and the size of the small parameter o. For flow over a flat plate at zero angle of
attack, the local boundary-layer thickness and consequently, the local Strouhal number both
increase monotonically with increasing downstream distance. The local Strouhal number
then approaches Sy, from below so, in the streamwise region of interest, S; is negative. The
size of ¢ is chosen so that the linear wave has a well-defined critical layer. The analysis of

BCH shows that this condition is satisfied if

M?l<o<M? (2.19)
in which case
c=1l-0¢1+---, (2.20)
Rea = M'%do + -, (2.21)
and
Ima=—04 M3k, +---, (2.22)

as M — oo, where €, & and k, are all order-one real constants. It should be noted that

the so-called acoustic-mode scaling, on which the analysis of Goldstein & Wundrow (1990) is
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based, is recovered, for the present choice of viscosity law, when 0 = M =2, The analysis to
follow, however, does not apply to this scaling and a separate treatment would be necessary
to capture this smaller range of frequency deviations.

The critical layer is centered about the transverse position where the phase speed of the
disturbance equals the mean flow speed. From (2.3) and (2.20), this requires f' — 1 = O(0)
which, in view of (2.15), (2.17) and (2.19), is satisfied in an overlap region between the wall

and temperature adjustment layers where

FNE

(2.23)

O
3

M

N
il
Q

is order one. The flow will be nonlinear in this layer provided the local instability-wave
amplitude is sufficiently large.

The unsteady flow remains predominantly linear outside the critical layer so the relevant
solutions for the streamwise and transverse components of velocity, the temperature and the

pressure expand like

u=f'+ eRe\IllATeiX + uy + 601—45'M4u3 + -y (2.24)
v= —M_%eReiéﬂblA"ei}2 + vy + GU-ITSM4U3 + -, (2.25)
9 =T + eReO AtelX + €20, + cos M3 + - - -, (2.26)
and
pl? =1+ eReHlATeiX +e*my + 60'14_5M47T3 + -, (2.27)
respectively, where
X =M%alz-(1-09t (2.28)
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denotes the streamwise coordinate in a reference frame moving with the waveand e € lis a
characteristic amplitude of the instability wave in the region where nonlinearity first comes
into play. This nonlinearity alters the solution over a streamwise scale inversely proportional
to the local linear growth rate and is accounted for by the function At(z;) where

1

wi=

2 =01 Miz. (2.29)

The O(€?) terms in the above expansions account for higher-order corrections due to nonlin-
earity outside the critical layer while the O(ea% M%) terms are introduced to allow matching
with the higher harmonics generated within the critical layer.

The relationship between ¢, 0 and M is determined by requiring that the lowest-order
nonlinear terms appearing in the critical-layer vorticity equation are of the same order as
the linear convection and non-equilibrium terms. This choice ensures that the nonlinear
problem will reduce to the appropriate linear solution far upstream. The function Al(z;) will
ultimately be determined by the nonlinear dynamics in the critical layer but matching with

the upstream linear solution requires
At o glelsrtinmidar 55 £ 5 —co (2.30)

where at! is a complex constant.

The local instability-wave amplitude € is related to the amplitude of the imposed dis-
turbance through the solution of the weakly nonparallel linear stability problem. For a given
excitation amplitude, the e-0-M relation then determines the magnitude of the deviation of
the local Strouhal number from S, in the streamwise region where nonlinearity is expected
to become important. The success of the theory for any given excitation amplitude depends

on how well (2.21) and (2.22) approximate the wavenumber in that region as determined
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by the local compressible Rayleigh problem. A further constraint on the theory is given by
(2.19) since this condition ultimately leads to a restriction on the size of € (see (5.15) below)
and consequently, on the excitation amplitude.

The functions IT;, ®;, ¥; and ©; of 0, z1, 0 and M are determined, to the required

level of approximation, by

YK 1 oI 22 (f = o)
—e)f = |—m——| T |1 - M ———— |11 =0, 2.31
(f C) a,’,’ [(f,_c)2 377] @ T 1 ( )
i (7) =T P
— =-T | M *“——— - 1|11, 2.32
on\f-c f - 02 ' (2:32)
_ T f"
A2
¥, =-M f,_cII1+ T(fl—c)él’ (233)
and
TI
Or= (- VT + 7 @y, (2.34)
subject to the boundary conditions
%:0 at 7=0, I;—0 a n-—o0, (2.35)

where the complex wavenumber and phase speed are now given by

- b G’} 1 dAt
_ =42 2.
a=M 2(a+04MiA'fdz1 , (2.36)
and
t
c=1-0é— o+ M? 1 _da (2.37)

iC_l!At d.’tl '

respectively, and the real constants & and ¢ have expansions of the form
&= dao+ o M2a + - (2.38)

and

(2.39)

o
il
o
)
+
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It should be noted that the next correction to the mean flow in the wall layer was found by
BCH to produce an O (M ‘%(H"ﬁ)) term in (2.38). Although the essential results for the
linear flow outside the critical layer are unaltered by this term, (2.19) is stiffened slightly by
requiring

o> M~iG+T) (2.40)

so as to keep the linear analysis as straight-forward as possible.
In the next section, approximations for II;, ®;, ¥, and ©; valid outside the critical layer
are derived. To facilitate in this derivation, a schematic of the asymptotic structure of the

flow field in the Dorodnitsyn-Howarth variable is given in figure 2.

3. Unsteady solution outside the critical layer

First, the unsteady solution in the wall layer where £ = O(1) is considered. In this

region, I1; expands like
I, = P,+0°M2P, 4 ---+ics M?P, +--- (3.1)

where, without loss of generality, P, is taken to be real so that iP; is the first imaginary term.
Substituting this expansion, along with (2.9) and (2.10), into (2.8) and (2.31) and equating

like powers of o and M the following equations are obtained
LPy =0, (3.2)

— / 2
LP = 22—; {ag:rg [1 - (—fo—TTol—)] Po} , (3.3)

and

- 1 daf L \'po e[ B=DF
[:.P, = 2Im (ma) {('}z_—l) Pé + aOTO [1 - T] Po}, (34)
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where

112
PR SRV I RVESS: R

In the frequency range of interest, the eigenfunction is concentrated in the wall layer so, in

addition to the usual wall boundary conditions
PL(0) = P}(0) = P{(0) =0, (3.6)

the solutions to (3.2)-(3.4) must also satisfy

2

b @ 1 dAf
Py~ ———=B,, Pi~221B P~ —2Im [ —— 22 ByC;, .
1] 7 7 0, 1 C_IQ Ocla m (ldoAT d.’E1> OC (3 7)

as £ — oo, where By is a nonzero constant which depends on the normalization chosen for

T1; and the constants C; and C; are found by the method of variation of parameters to be

o 2
e (i
and
Cim e [ () (ope + &4TERS) e (3.9

A numerical solution to (3.2) subject to (3.6) and (3.7) yields a countably infinite set of
eigenvalues &g each of which corresponds to a non-inflectional neutral frequency Sin.
The solution given by (3.1) breaks down in the overlap region where z = O(1). The

appropriate expansion, in this region, is
2202 15 s Iar2p
M, =o’M?Ep+---+0iPi+---+io2M°F, + - -- (3.10)
where Ej is a real constant and P, and iP; contain the first non-constant real and imaginary

terms respectively. It is easy to see from (2.9), (2.10), (2.12) and (2.23) that in this region

b
f'=1-—a;+---. (3.11)

17



Substituting (3.10) and (3.11), along with (2.23), into (2.8) and (2.31) one finds, after integ-

rating twice with respect to z,

b2  2bg

P] =D, (—ﬁ —'—323 +E§Z) +E11 (312)

and

_ -2 1 2 -
Pi= -2 (2)" Bo(im¢* + D) (— o Ba, é";’z)

ﬁ (4] ﬁ 323
1 dAt b _
+2Im (mgx—l) Dy <-3? + clz) + F; (313)

where D,, E;, D;, E; and ¢ are at most functions of z, (the latter of which can be different
depending on whether z 2 (b/El)%).
The eigenfunction must be rescaled again in the temperature adjustment layer. The

solution here turns out to be
O, = 0°M?Eg + - -+ 02M3 (Fin+Gy) + -+ +io s M3 (Fin+G;) + - -- (3.14)

where only the first terms containing non-constant real and imaginary parts are shown.
Clearly, (3.14) does not satisfy the free-stream boundary condition given by (2.35) and it is,

therefore, necessary to introduce an outer region where the variable
(=M"%g (3.15)
is order one. The solution in this region is given, to the required order of accuracy, by
I, ~ Qexp (-av1— o2M?2 () (3.16)

where the constant () has an expansion in powers of ¢ and M.
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The solutions in the various regions must, of course, be matched. The relevant results

of this process are

Eo= 2 BOC’I, (3.17)
D; = By, (3.18)
D; =-Im¢~, (3.19)
& = —%, (3.20)
and
m (T/%fi—if‘) = -%sbag (%‘)T Im (¢ — ¢7), (3.21)

where the last two equations form the leading-order approximation to the linear dispersion
relation. The phase shift ¢+ —¢~ appearing in (3.21) is ultimately determined by the nonlinear

dynamics inside the critical layer but matching with the upstream linear solution requires
pt — ¢~ —inr as 74— —oo. (3.22)

In order to formulate the nonlinear problem in the critical layer, it is necessary to have
the expansions for ®;, ¥, and ©; near the transverse position where the phase speed of the
disturbance equals the mean flow speed. These are obtained by substituting (3.10)-(3.13)
along with (2.23) into (2.32)-(2.34) and expanding about z = 2. = (b/él)%. The resulting

expressions are

_ 3 4b By um,.1 &0t} 1 dA"\ Bo
P, =—-oM:? = (z— z) a2 EWk (324 b3 + GodT dz; | 32 4, (3.23)
1 b B 2 2 -2 0
\1112—0'4922(2.%—2)?— M J0+—(IH|Z—ZCI+¢ —'d) ) 1_—+"‘, (324)
c 0
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and

CHEY L) et ST (3.25)

where the real constant B has an expansion of the form
B=Bo+~--+o(a%M2), (3.26)

Jo is an order-one real constant and the dots indicate that higher-order terms in z — 2, as well
as in 0 and M have been omitted. It is interesting to note that the leading-order temperature
fluctuation given by (3.25) is bounded in the critical layer. This result, which differs from the
singular behavior obtained by Reshotko (1960), is due to the long wavelength approximation
being employed here and is the primary reason the critical-layer dynamics turn out to be

strongly nonlinear rather than weakly nonlinear as in the compressible-shear-flow analysis of

Goldstein & Leib (1989) and Leib (1991).

4. Linear dispersion relation

Before proceeding to a formulation of the nonlinear problem, some results obtained from
the linear analysis are discussed.

The local Strouhal number of the instability wave can be expressed as
S=ac=Mtag+*M?a + -, (4.1)
so it follows from (2.18) that
Sin = M~1d0 + 0 (a?M?), (4.2)

and S; = @;. Values of (4.2) corresponding to the first six &, determined by solving (3.2)

subject to (3.6) and (3.7) are shown as a function of M in figure 3 for an insulated plate.
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Also shown are the exact values of S, determined by solving (2.31) subject to (2.35) with
¢ = 1. This figure demonstrates that, even at supersonic Mach numbers, the leading-order
hypersonic solution provides a good approximation to Sir.

In addition to the Sy, curves, the exact inflectional neutral frequencies S, are shown in
figure 3. These values of S correspond to ¢ = f'(ns) where 75 is determined by the generalized

inflection point criterion,

1 fll ’
T(T_) 0 at 7n=1. (4.3)

As first observed by Mack (1984,1987), each S;, curve has a range of M for which d5/dM > 0
and the corresponding neutral mode is vortical in character. In general, the rising portions
of the curves mark the high frequency neutral point of the vorticity mode while the declining
portions mark that point for the acoustic modes (c.f. figure 1). Figure 3 suggests that
the slope of the rising portions tends to zero as the Mach number increases in contrast to
the behavior exhibited in figure 6(a) of Cowely & Hall (1990) which was computed for a
Chapman-law fluid. Smith & Brown (1990) found that along the rising segments in the latter
figure S is O(vIn M) as M — oo while, for the Sutherland-law fluid considered here, BCH
show that S is O(1).

A direct comparison with Mack’s (1984,1987) work is difficult since he used a combin-
ation of viscosity laws and took the Prandtl number to be 0.71. Still, the neutral curves
in figure 3 as well as the growth rate curves in figure 1 are in qualitative agreement with
his results. The assumption of a Prandtl number of unity made here appears to yield solu-
tions which reasonably approximate those computed with a more accurate value. However,
it should be noted that Grubin & Trigub (1992b) found significant changes to occur in the

Rayleigh solutions when the Prandtl number is sufficiently small.
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Having demonstrated an agreement between the exact and asymptotic properties of the
neutral solutions, the behavior of the amplified waves is now considered. The local complex

wavenumber of the linear disturbance is given by
a=M"32 [(ao+a2M2al+---)+i(-a’«—‘M2n,+---)] (4.4)

where it follows from (2.30) and (3.20)-(3.22) that

K, =28 - 3%7A (~Gy) (4.5)
with
a3 4

Equations (2.14) and (3.8) show that b and C; are real and positive, consequently, (4.5)
requires negative values of & to yield real values of k.. When &, is positive, the growth rate
was found by BCH to be O(c M '%) so it follows from (4.1) and (4.2) that a discontinuity
in the expansion for Imo arises as S passes through S;,,. BCH went on to show how this
discontinuity is smoothed out by the solution for the acoustic-mode scaling 0 = M —2. This
aspect of the problem need not be considered here however, since, as mentioned in §2, S
(= @&;) is strictly negative in the streamwise region of interest.

The variation of x, with non-inflectional neutral frequency and wall temperature is de-
termined by A. This quantity is shown as a function of T} in figure 4 for the first two
values of &g. The curves show that, for fixed values of T, & and M, the growth rate of
the vorticity mode near the first non-inflectional neutral frequency Sy, is less than that near
the second S;2 which is in agreement with the results shown in figure 1. The asymptotic

solution predicts that this trend of increasing growth rates is continued for the subsequent
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Sin, vet, in figure 1, the growth rate of the vorticity mode near Sz is clearly less than that
near S;.. This discrepancy is due to the fact that at M = 10 the third acoustic mode has
only just merged with the vorticity mode (c.f. figure 3). At M = 20, figure 6.2 of BCH
shows that the growth rate near S;3 becomes greater than that near S;2 in accordance with
the asymptotic solution. If the growth rate associated with a particular non-inflectional neut-
ral frequency is considered, figure 4 shows a decrease with decreasing T;. This result may
seem to contradict the conclusion that wall cooling has a destabilizing effect on the Mack’s
so-called higher modes (Mack 1984). However, figure 9.13 of Mack (1984) clearly shows that
while the magnitudes of the peaks in the vorticity-mode growth rate increase with decreasing
wall temperature, the growth rate in the valleys actually decreases.

Despite this qualitative agreement, quantitative agreement between the exact and asymp-
totic growth rates is not achieved until the Mach number becomes very large. Quantitative
agreement is, however, not crucial in the present investigation because the final nonlinear
problem turns out to be entirely independent of k.. In fact, the nonlinear dynamics depend
only on the o-M scaling of the growth rate. To determine the accuracy of this scaling, the
exact vorticity-mode growth rate is computed as a function of M for a fixed deviation from

a non-inflectional neutral frequency, that is for

S=(1-NS1 (4.7)

where 0 < A < 1 is a constant. The results of this computation are presented in figure 5
for the first two values of S;,. The asymptote predicted by the hypersonic solution is also

shown. This is determined by noting that (4.1), (4.2) and (4.7) imply

&y~ —0 M™% \dp (4.8)
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which, from (2.19) and (2.40), requires
M50V ¢ x e« MTE (4.9)
Substituting (4.8) into (4.5) and the result into (4.4) gives
o, =Ima=0 (M“%/\ls-l) (4.10)
and, since A is held fixed along the computed curves,
M do; 9

"1 (4.11)

Although the comparisons shown in figure 5 are fairly good, it is felt that improvements could
be obtained by adding higher-order corrections to (4.10). However, such terms do not enter

into the critical-layer analysis and so are not pursued here.

5. The critical layer

Equation (3.24) shows that the solution in the overlap region becomes singular where
z = z,. The governing equations must therefore be rescaled to obtain a bounded solution in
this region. The thickness of the small-growth-rate critical layer is of the order of the mean
velocity times the growth rate divided by the mean velocity gradient times the real part of
the wavenumber so it follows from (2.36) and (3.11) that the appropriately scaled transverse
coordinate in this region is

Z=0"iM%(z - z,). (5.1)

Equations (2.24)-(2.27), (3.10), (3.11), (3.23)-(3.25), (A1)-(A4), (A13) and (A 15)-

(A 17) along with (5.1) suggest that the flow in this region should expand like

4b b b B -
u=1-o0¢+ O’%MZ—SZ— agM“%Zz - a%e—fg—ReATe’X
22 22 9z ag
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+ bounded Z—independent terms + oZM Zedy + -+,

ou 4b 324 _ 1 dAt
v—a4MeRe[( Z+b3a°cl+max—1
—o-im-2e2 Bopeate .x) ﬂmtev?] o
ch ad )
0 =ocM*— 36 Mt 1442 + ot M2eh) + -
C C

and

=2
1 c 7
py=1-— o?M2e=L BoRe AlelX +
Qo
This solution will match the ‘outer’ solution in the overlap region provided

01, b By

t lX
3 - 922 ReA
meiﬂmmﬂ
z. &

as Z — too, and

2r r+oo /97, b By 2\ ix - 27 &
[ ( - Gz A*')e 424X = -5 A By (6" -

¢~) Al

(5.2)

(5.5)

(5.6)

(5.7)

(5.8)

The functions %; and #; of X, Z and z; are determined by the vorticity and energy

equations which can be written as

e 2o T (oot 2) 2
- 55 (agg rotargy )]
and
pe=1=1%p,

respectively, where

= 11 0 i) v 0
= g4 2, Y _ —_— —_—
D_04Mua$1+a(u 1+ac)aX+a 737"

-2
2
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.3 f_0v u zav) _3,,.31 0u
w=M 2(QH+G‘M3:E] —0o"2M 2TaZ, (512)
and it has been assumed that
R>o iM% (5.13)

so, to the required level of approximation, terms accounting for viscous diffusion effects as
well as those arising from corrections to the mean flow due to the growth of the boundary
layer can be neglected.

The relationship between the amplitude scale ¢, the phase speed deviation ¢ and the
Mach number M is determined from (5.9)-(5.11) by requiring that the lowest-order velocity
jump produced by the nonlinear terms is of the same order as the velocity jump due to linear
effects, i.e. O(02M?2¢). A little experimentation shows that nonlinear effects will influence %;
if

€= o3 M2 (5.14)

which, when combined with (2.19) and (2.40), requires

M-+ e < M™%, (5.15)

The equations governing %; and 8, are then

= 6’&1 4b =2 s a4t iX 8 = 144
D (a_z - z_fz) = e BoRe (i4'e'¥) 57 (01 - Z) (5.16)
and
_ (= 144
D (01 - z) =0 (5.17)
where
N — a _ 4b b Bo t l)-() a Z: Bo [(4b
D_6z1+a° (ZEZ_QZC&gReAe B_E+36&0Re ZS’Z
324 , 1 dA' b By ,iix\.,t.ux] @
+bz§ apcy + GoATdz, 9232 ReAle'” | iAle 37 (5.18)
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is the limiting form of the total derivative in the critical layer.

The presence of At in the coefficients of both the 5 and 0z terms in (5.18) as well as in

the right-hand-side of (5.16) shows that nonlinearity enters the critical layer dynamics through

both streamwise and transverse convection terms as well as through vorticity production due

to pressure-density variations. The nonlinear streamwise convection terms turn out to be

passive in that they do not affect the instability-wave growth rate (although they do strongly

affect the flow field in the critical layer). These terms can be eliminated from (5.18) by simply

introducing a strained transverse coordinate,

Z7=27- —;BOReAT iX
36 @

so that D becomes

1_7 i 4b oZ a— + g——aoclBoRe ('Afeix) i

0z, X b 0z

(5.19)

(5.20)

The parameters characterizing the ‘outer’ linear flow can be removed from the critical-

layer equations by introducing the following normalized variables,

24 10
A= —3———B o Alei(Xomrmiz1)

Q= -.z_zci (3&1 b BOR Ate 1X)

Bbag \0Z 922 a2
1 21 /. 4B
= 2 (8, - ——Redle 'X)
H 2-37&0(1 zcaRe
3%, _
r= —2—zélaoz1 Zo,

and

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)



Equations (5.16), (5.17), (5.8) and (3.21) then become

0H )
oYy '

DQ = Re (i4e'¥) (4— -3
DH = —Re (i4e'¥),
1 2T +o0 (X
1 / / Qe7XdYdX = —3(¢% — ¢7)A,
T Jo —00
and
1dA
+ ) = — ~ a4
Im(¢™ - ¢7) = ~Im (iA d:z)’
respectively, where

D

a% +Y5—a)-(— —Re (iAe‘X) aiy'

If the, as yet, unspecified real constants X and Z, are chosen to be
Xo = —arg (—Boa1) ,

and

(2.30) becomes

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

From this condition along with (3.22) and (5.27)-(5.29), one can show that the solution for

A remains real for all values of Z. Equations (5.29) and (5.30) can then be combined to give

2m 400 .
1 / / Qe-iXdydx = 334,

(5.35)

It should be noted that equations (5.27) and (5.28) are the same as equations (6.29) and

(6.30) of Goldstein & Wundrow (1990) but with » = 4. The difference in the velocity jump
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condition given by (5.35) and that given by equation (6.31) of Goldstein & Wundrow (1990)
with r = 4 is due to a difference in normalizations which can be eliminated by replacing their
T with (1 — r)T" in equations (6.22)-(6.27) of the latter analysis.

Equations (5.27), (5.28) and (5.35) must be solved numerically subject to matching
with both the ‘outer’ flow in the overlap region and the linear flow upstream. The former
condition requires that © and H be strictly periodic in X and satisfy the homogeneous

boundary conditions

Q, H—-0 as Y — *oo, (5.36)

while the latter, in addition to (5.34), requires

§2—>—3Re( Aéx) (5.37)

1
Y —-ir

and

H%—M( AM) (5.38)

Y —ir
as 7 — —oo. The technique used to solve the final critical-layer problem parallels that given
in Goldstein & Wundrow (1990) and the reader is referred there for a detailed discussion of

the method.

6. Numerical results and discussion

Goldstein & Wundrow (1990) considered the spatial development of an initially linear
inviscid instability wave on a hypersonic boundary layer. Their analysis was done for a fluid
satisfying Chapman’s viscosity law using the acoustic-mode scaling which, in the present
analysis, corresponds to 0 = M =2, The evolution equations they derived depend on a single

free parameter, r, which is defined as the ratio of the logarithmic derivative of the mean
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temperature to the logarithmic derivative of the mean vorticity evaluated at the critical level.
For the amplified acoustic modes, r varies between 0 at the non-inflectional neutral frequency
Sin and 1 at the inflectional neutral frequency S,,. For the amplified vorticity mode, » must
be greater than some minimum value which is determined by the asymptotic solution to the
Rayleigh problem and is itself greater than 1. This condition reflects the fact that the phase
speeds of the vorticity-mode solutions to which the nonlinear theory applies are less than
those of the amplified acoustic modes and so the critical layer is located closer to the wall
where the mean temperature variations out weigh the mean vorticity variations.

Goldstein & Wundrow (1990) only presented numerical results for the case when the
disturbance is an acoustic mode, i.e. for r < 1. These results show that nonlinear vorticity
generation in the critical layer can cause a super-exponential growth of the instability wave but
that this subsides once the wave amplitude becomes sufficiently large. Transverse convection
effects then come into play to produce a nonlinear roll-up of the flow within the critical layer
and this, in turn, drives the growth rate toward zero. The final asymptotic state of the
critical layer, for r < 1, is left undetermined but the authors indicate that viscous effects will
eventually become important due to the continually decreasing scales generated by the roll-
up. The incompressible-shear-flow analysis of Goldstein & Hultgren (1988) along with the
investigation of the upper-branch stability of compressible boundary layers due to Gajjar &
Cole (1989) suggest that viscous effects will ultimately produce a quasi-equilibrium critical-
layer structure and a slow algebraic growth of the instability wave.

Of primary interest, in the present investigation, is how the numerical results given in
Goldstein & Wundrow (1990) are altered when r = 4, i.e. for the case of more practical

importance when the disturbance is a vorticity mode. In figure 6, the scaled instability-
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wave amplitude A determined by (5.27), (5.28) and (5.35) is shown as a function of the long
streamwise variable Z. The corresponding instability-wave growth rate is presented in figure
7. These curves show that the wave grows linearly until its amplitude becomes large enough
for nonlinear effects to become important. The growth rate then decreases and soon becomes
negative. This results in a rapid reduction in the wave amplitude which is in contrast to the
initial nonlinear amplification observed by Goldstein & Wundrow (1990). Both behaviors are
the consequence of vorticity generation due to compressible effects. The difference presum-
ably results because the nonlinear vorticity-generation (or Bjerknes) term appearing in the
final critical-layer vorticity equation changes sign relative to the linear inhomogeneous term
when r is greater than 1 (see equation (6.29) of Goldstein & Wundrow (1990)). The results
presented in figures 5 and 6 correspond more closely to the special case found in the analysis
of the weakly-nonlinear critical layer associated with a three-dimensional disturbance on a
compressible shear layer done by Goldstein & Leib (1989) and Leib (1991). For this special
case, the scaled amplitude function is purely real and figures 4 and 7 of the former analysis
and figure 1 of the latter show that nonlinearity produces a rapid reduction in both the growth
rate and wave amplitude.

Although the nonlinear terms in the critical-layer problem become less important as the
instability-wave amplitude continues to decrease, the solution does not return to its upstream
linear state. This is because the effects of the nonlinear redistribution of vorticity, which takes
place near the peak in the amplitude, persist downstream in such a way that the growth rate
remains negative. This redistribution is demonstrated in figure 8 where constant-vorticity
lines in the (X, ¥) plane are shown at various values of Z. Asin Goldstein & Wundrow (1990),

localized regions of high vorticity are produced by the nonlinear coupling of the vorticity and
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energy equations (c.f. figure 8(b)) while the more usual roll-up of the contours is the result of
transverse convection effects (c.f. figure 8(c)). Superposed on this behavior is a straining of
the contours due to the nonlinear streamwise convection term which has been re-introduced

by showing the vorticity as a function of the more physical transverse coordinate,
_ 22 K; 3 X
Y===|Z+-=5— ]| =Y — -ReAe (6.1)
5& & 8

The straining is most pronounced in figure 8(c) where A is the largest. The important point
to note is that, once the redistribution takes place, the vorticity field remains rolled-up even
after the instability-wave amplitude has become quite small (c.f. figure 8(d)).

The results in figures 6 and 7 suggest that the quasi-equilibrium critical-layer structure
proposed for the downstream behavior of the acoustic modes will not apply to the vorticity
mode considered here. In fact, the numerical solution to the critical-layer problem predicts
that the scaled amplitude of the vorticity mode goes to zero at a finite downstream distance.
Before this point is reached, however, the asymptotic formulation outside the critical layer
breaks down. To show this, the amplitudes of the higher harmonics generated within the
critical layer must be determined. The equation governing these amplitudes is obtained by
equating the expression for the velocity jump across the critical layer given by the ‘outer’
solution in the overlap region, (B 15), with that given by the ‘inner’ critical-layer solution and

is expressed as

17 2x
(m) — Zc lm(Xo—K,.‘L‘l) A(m) _ __/ / Q ldeYdX 9
% 312 magc2 %3 € (6.2)
where m = 2,3,.... The amplitudes of the first few harmonics are shown in figure 9. It is

clear that, as the amplitude of the fundamental goes to zero, the amplitudes of the higher

harmonics do not. Consequently, the expansions (2.24)-(2.27) eventually become disordered.
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A solution for the next stage of evolution is not worked out here because, once the amplitude
of the fundamental becomes sufficiently small, other disturbances not accounted for by the
present theory but always present in practice would then, most likely, be dominant.

Finally, viscous effects could be incorporated into the critical-layer analysis by loosening
the restriction in (5.13). Some care must be taken in doing this, however, since it is possible
that an interaction between the mean flow and the leading-edge shock of the sort considered
by Bush & Cross (1967) could take place for certain values of o. In any event, it is felt
that, although viscosity will tend to reduce the gradients in the vorticity and temperature
fields, it will not significantly alter the behavior of the instability-wave amplitude because the
nonlinear interaction that drives the amplitude to zero occurs over such a short distance (on

the Z scale) that viscous effects would not have time to assert themselves.

Appendix A. Nonlinear terms in the overlap region

The lowest-order approximations (in ¢, M and z—2z.) of the O (€2) terms in the expansions
(2.24)-(2.27) are determined in this appendix. Since these terms are generated by nonlinear

interactions that are quadratic in the fundamental mode, they can be expressed as

up + miuy = U + Re¥Pei2X (A1)

vy +mvy = —M 326 (8] + Reid{ei?X ), (A2)
8, + m8; = O + Re8{Pe?X, (A3)

s = I + RelT{Yei2X (A4)

where u;, v1, 6; and 7; denote the coefficients of the O(¢) terms in (2.24)-(2.27) respectively.
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The functions ng), <I>g2), \Ilgz) and 9%2) of 7, 21, 0 and M are determined to the required

level of approximation by

L,I{? = M2 {a2TF‘2) ~(f - o)? 9 [i] } (A5)
2115 2 an (f - c)2 )
o) = TS (fll —5 (M—z ag}:) + ng)) , (A6)
v = 73_-—6 (j%pg” - M2 - %F}"”) , (A7)
of = - [T+ (- ) (' - T — 187, (A8)
where

L= (f' - ¢)? a% [@%6)—25‘91—7} — (ma)*T? [1 - Mz%c)?} , (A9)
F? = [quf - %a% (@,91) + M"@lHl] At?, (A 10)
GP = % [2a2\Ill<I’1 - %26% (23) + M'2%1%%1] i (A11)

HP = {znple1 - -11:5‘?7-7 (®161) - (v - 1) (f' - ©) 11, (©, + TTL;)
—(y-1)T [zqunl - 71""8% (¢>1H1)] } A2, (A12)

Similar equations can be obtained for H.(zo), <I>g°), \Ilgo) and eg") however, these terms due not
contribute to the leading-order behavior of 72, v2, uz or 82 near the critical layer and so can
be ignored.

For the purposes of the present analysis, it is only necessary to consider the solutions in

the overlap region where z = O(1). In this region, ng) expands like

H§2)=E((,2)+-"+0'Pl(2)+"' (A 13)
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where Ec(,z) is at most a function of z; and 131(2) is the first z-dependent term. Substituting
(A 13) along with (2.23), (3.10), (3.11) and (3.23)-(3.25) into (A 5) one finds, after integrating
once with respect to z,

6131(2) _ 4_2_ 2 BO t 2
B = Sald(e - 20 [+ 0(: - 2] ((—%A ) (A 14)

to lowest order in o and M as z — 2. It now follows from (A 6)-(A 8) that

3 = U%M%;—6 [z*+0(= - z.)] (g—gA*)z, (A 15)
¥ = o~} [J; + Oz — 2.)] (’;—g/ﬁ)z , (A 16)

and
o) = a‘%M2-31—22—_1—Z—; [2+0(-2)] (?-%A*)Z , (A17)

as z — z., where J; is an order-one constant.

Appendix B. Higher harmonics in the overlap region

In this appendix, the leading-order approximation to the velocity jump across the critical
layer corresponding to the 0(0’14‘5 M*¢) harmonics in (2.24)-(2.27) is determined. Since these

harmonics are generated by nonlinear interactions in the critical layer, they take the form

o0
uz = 3 Re¥{Ma{MemX, (B1)
m=2
3 imX
v3=-M"2 Z Reim&fbgm)&gm)e'"‘x, (B2)
m=2
o) -
6= 3 Re@{MaiMemX, (B3)
m=2
and
oo R
3= 3 Rell{Ma{™emX, (B4)
m=2
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where the scaled harmonic amplitudes &gm)(zl) are determined by the nonlinear flow within
the critical layer and the functions ‘I!gm), <I>§"‘), 9:(;") and Hgm) of n, z;, 0 and M are

determined by the following linear equations outside the critical layer,

L™ =0, (B5)
m)_ ___ M2 8 m
@3 = m2a2 (f’—c) an 3 (B6)
m 1 I/} m _ m
o= (fo )
and
m 1 T m m
o) = A [Za + (= 1) (f - T (B8)

These functions satisfy the usual homogenous boundary conditions at the wall and decay
exponentially as n — oo. However, they are, in general, discontinuous across the critical
layer.

It is only necessary to consider the solutions in the overlap region where z = O(1).
In order for the solutions in this region to match with those in the wall and temperature

adjustment layers, I'I(3m) must expand like
™M =1+.405p™ +..., (B9)
for 2 < 2., and
N =1+---+o~ M 2™+ ... (B 10)

for z > z., where I_’l(m)i is the first 2-dependent term. Equations (B 9) and (B 10) imply that
the pressure fluctuations are constant across the critical layer to O(alTs M*¢) (afact that can
be deduced from the transverse component of the momentum equation in the critical layer),

but that the pressure gradient is discontinuous at O(a% M?2¢). Substituting (B 10) along with
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(2.23), (3.10), (3.11) and (3.23)-(3.25) into (B 5) one finds, after integrating once with respect

to z,
9 p(m)+ - 16 2
gPl =—mozoz—g(z—zc) + .- (B 11)

as z — z. from above. It now follows from (B 6)-(B 8) that

(m) _ g-ipg-i L A
@3 =" M 2m&061 Zc(z Zc)"l’ ) (B 12)
PR SV TR LA
Uy =0"tM mo'zOE§9zc+ , (B13)
and
o = o2 2 4. (B14)
magpCy 2.

as z = z, from above. It can be shown that the solution for \Ilgm) is o(o“% M™2)asz - z
from below, therefore the leading-order approximation to the velocity jump across the critical

layer associated with the higher harmonics is given as

= 1 b im X
Auz = uz(zF) —us(z]) = o i M2 Z Re ——— —g—z—&gm)e""x 4 (B15)
m=2 ¢
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FIGURE 1. Growth rate vs. frequency for an insulated plate at M = 10.
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FIGURE 2. Asymptotic structure of the large-Mach-number solution in
the Dorodnitsyn-Howarth variable.
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FIGURE 3. Neutral frequencies vs. Mach number for an insulated plate.
Solid lines, exact solution; dashed lines, asymptotic solution.
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FIGURE 6. Scaled instability-wave amplitude vs. long streamwise distance.
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FIGURE 7. Scaled instability-wave growth rate vs. long streamwise distance.
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FiGURE 8(a). Vorticity contours in the (X,Y)-plane at z = 0.
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FIGURE 8(b). Vorticity contours in the (X,Y)-plane at z = 1.
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FIGURE 8(c). Vorticity contours in the (X, Y)-plane at Z = 1.5.
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